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Abstract

We extend our recent work on higher-order time integration of Richards’
equation to layered heterogeneous porous media, using a differential-algebraic-
equation-based method of lines (DAE/MOL) approach. We show that the
DAE/MOL approach is robust and efficient compared to standard low-order
time integration methods for heterogeneous media. We also show the ad-
vantage of using an integral representation of permeability compared to a
standard arithmetic mean for the test problems considered herein.

1 Introduction

Richards’ equation (RE) is commonly used to describe flow in par-
tially saturated porous media [], although questions about the validity
of this approach remain []. RE is commonly solved using low-order
spatial approximations [| and low-order temporal-integration meth-
ods []; several codes are available that implement these methods [].
In our recent work, we have shown: (1) DAE/MOL approaches
for solving RE are robust and more efficient than traditional low-
order approaches [?]; (2) modification to a standard DAE integrator
can further improve efficiency [?]; (4) use of vectorizable interpolation
methods for evaluating constitutive relations can drammatically af-
fect simulator performance [?]; (3) monitoring of the condition num-
ber of the Jacobian is an effective strategy to aid in the selection
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of nonlinear termination criteria [?]; (5) lack of smoothness in van
Genuchten-Mualem relations for common media conditions can lead
to problems with convergence of nonlinear solvers—a situation that
can be remedied using an integral conductivity representation and
cubic spline interpolation []; (6) DAE/MOL approaches generalize
to two dimension, as does condition-number-based termination of
the nonlinear solver [|; and (7) transformation approaches can sig-
nificantly improve the efficiency of RE solution methods for both
standard low-order methods and DAE/MOL approaches [].

While these advances have contributed to the robustness and
efficiency of solutions for RE, the focus of this work has been on
homogeneous media, except our recent investigation of a slightly het-
erogeneous two-dimensional system in which the focus was on linear
and nonlinear solver issues []. Neither our previous work, nor the
work of others that we are aware of have investigated the efficiency
and robustness of the DAE/MOL approach for solving RE for het-
erogeneous media, although such conditions are typical of natural
systems. This seems especially important to consider for media that
lacks smoothness in certain situations.

The objective of this work is to compare standard, low-order
methods for solving RE to a DAE/MOL approach for heterogeneous
media conditions. This comparison has two important components:
robustness, or the reliability of the solution method; and efficiency,
the error in the solution achieved for a given investment in computa-
tional resources.

2 Methods

2.1 Formulation

We consider two common forms of RE in one spatial dimension, the
pressure-head-based form

) + 8,501 5 = 5 [K) (52 +1))] W

and the mixed form
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where ¢ = df, /di is the specific moisture capacity, S is the specific
storage coefficient, which accounts for fluid compressibility; S, is sat-
uration of the aqueous phase; 1 is the pressure head; ¢ is time; 6, is
the volumetric fraction of the aqueous phase; z is the vertical spatial
dimension; and K is the hydraulic conductivity.

We consider problems with auxiliary conditions of the form

P(z,t=0) = ¢o(2) (3)
Pz =0,1>0) = (4)
Pz =2,t>0) = oo ()

where Z is the length of the domain, 9y may be a function of space,
and v; and 1y are constants. These conditions lead to the devel-
opment of a sharp infiltration front and saturated conditions over a
portion of the domain, which is a difficult class of test problem.

For closure, we use the standard van Genuchten (VG) pressure-
saturation relationship [van Genuchten(1980), ], which is given by

_ea("/))_ar_ (1+|C¥v1/)|n”)_mv, P <0
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and the Mualem saturation-conductivity relation [Mualem(1976), |
012
K (So) = K, 8/ [1 = (1= 8/m)™] (7)

where m, = 1—1/n,, S, is the effective saturation, 6, is the resid-
ual volumetric water content, 6, is the saturated volumetric water
content, «, is a parameter related to the mean pore size, n, is a pa-
rameter related to the uniformity of the pore-size distribution, and
K, is the water-saturated hydraulic conductivity.

2.2 Spatial Discretization

We use a standard finite-difference approximation to discretize RE
with respect to the spatial dimension [Celia et al.(1990)Celia, Bouloutas, and Zarba,
], z, where z € [0, Z]. We consider a uniform spatial discretization
comprised of n, — 1 intervals {[z;,zi+1]};" 1 of length Az, with
Az = Z[/(n, — 1), and z; = (1 — 1)Az for 1 < i < n,. The spatial
operator
0 oY
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is approximated at z = z; for 1 < i < n,, by

Osq; () = Az7° [Kz'+1/2(¢i+1 — i) — Ki_12(thi — wH)] 9)
+Az7! (Ki+1/2 - Ki—1/2)

where n,, is the number of spatial nodes in the solution, and ; is the
approximation to 1(z;).

Interblock conductivities, K11/ are evaluated using an arith-
metic mean (KAM)

Kiv179 = (Ki + Kiz1) /2 (10)
and an integral (KINT) approximation

1 max{9;,i+1} Kdp, if ; # i1

K190 = { [¥i—Yit1] Jmin{t;, it} . (11)
1/ K (1), if ¥; = i1

2.3 Temporal Integration

We considered two temporal integration methods, the first method
is a standard implicit finite difference approximation applied to the
mixed-form equation and solved using modified Picard iteration (MPT),
which is considered the standard approach [|. Time step size was se-
lected using a common empirical adaptive time-step control algorithm
[Rathfelder and Abriola(1994), ]

e if m < my then At, 1 = min(fiAty, Atpmaz)
e else if m > my then At,11 = max(At,/ ft, Atmin)

where m is the number of iterations required by the nonlinear solver
to converge for time step n, m; is a lower iteration limit, m, is an
upper iteration limit, f; is a time-step acceleration factor, Aty,q, is
the maximum allowable time-step size, and At,,;, is the minimum
allowable time-step size.

The second time integration method investigated was a DAE/
MOL approach for the pressure-head form of RE (1), which was ap-
plied to the semi-discrete form of RE given by

AW

= Os4i(¥) (12)



where A includes accumulation and compressibility terms. A modi-

fied version of DASPK [Brown et al.(1994)Brown, Hindmarsh, and Petzold,
Tocci et al.(1997)Tocci, Kelley, and Miller, | was used as our DAE
solver. DASPK is a DAE solver based upon the fixed leading coeffi-

cient, first- through fifth-order backward difference formulas and con-
taining error estimation and control through adjustment of method

order and step size [Brenan et al.(1996)Brenan, Campbell, and Petzold,

-

2.4 Efficiency

We define efficiency as the computational effort required to achieve a
specified accuracy, which requires evaluation of both work and error—
the former being challenging and the latter trivial. We evaluate work
for the MPI method by

Wp = wene + wyny (13)
and for the DAE/MOL method by
Wi = wjin; +wgny +wimy (14)

where W), is a work measure for MPI methods, w, is a weighting factor
for formation of the coefficient matrix and right hand side vector,
which are typically done at the same time, w; is a weighting factor
for solution of the linear system of equations, n. is the number of
coefficient matrix formation calls, n; is the number of linear solutions
performed, W, is a work measure for Newton iteration DAE methods,
w; is a weighting factor for formation of the Jacobian matrix, wy is
a weighting factor for evaluation of the function, n; is the number of
Jacobian evaluations, and n; is the number of function evaluations.
We estimated these weights based upon CPU time on a Hewlett-
Packard ... running version ... of ... operating system, and using
version — of ... complier as w. = 0.484, w; = 0.552, wy = 0.271, and
w; = 0.181. Glenn these need to be updated.

Error was evaluated by comparison to dense-grid solutions using

1 &

1/k
| ep llx= [n_ Z (Wz - 1/)z'|)k] (15)

n =1

where k is the norm measure, with £ = 1 results are reported in this
work; and 1; is an approximation of the true solution based on a



Table 1: Media Properties

Variable Sand Loam Clay
0. (—) 0.093 0.078 0.102
0s (—) 0.301 0.430 0.368
a, (m1) 5.470 3.600 3.350
Ny (—) 4.264 1.560 2.000
K, (m/day) 5.040 0.250 7.970
Ss (m™1) 1.0 x 1075 1.0 x 107 0.000

dense spatial grid. The dense-grid solutions were generated using the
DAE/MOL approach with a spatial grid size equal to 1/32 of the size
used in the test simulations. Glenn check this too.

3 Results

Two layered, heterogeneous test problems were investigated using
the MPI and DAE/MOL approach described above. For both test
problems, the spatial domain was z € [0,4] m. The temporal domains
were t € [0,0.25] days for Problem 1 and ¢ € [0,0.08] days for Problem
2. The media for Problem 1 consisted of four, 1-m thick alternating
layers of loam and sand. The media for Problem 2 consisted of four
1-m thick alternating layers of clay and sand. The properties of these
materials are listed in Table 1, which were taken from the literature
[]. Problem 1 exhibits a larger degree of heterogeneity than Problem
2 due to the wider difference in K and n, between adjoining lay-
ers, making Problem 1 a more difficult test problem. The dense grid
solution profile for both test problems is shown on Figure 1, which
illustrates the effects of media heterogeneity and the sharp-front na-
ture of the solution profiles.

Quantitative results in the form of work and error measures for
each of the test problems are shown in Figures 2 and 3. The compar-
isons of the MPI and DAE/MOL approaches showed:

1. the DAE/MOL approach was more robust than the MPI ap-
proach, the MPI method failing to produce convergent solutions
for Problem 1;
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Figure 1: Solution Profiles for Test Problems 1 and 2.

2. the DAE/MOL approach was more efficient than the MPI ap-
proach when both methods converged, producing equivalent ac-
curacy results with as little as 30% of the computational effort
in one case; and Glenn check this.

3. the KINT produced more accurate and more efficient results
than the KAM approach. Glenn again check this.
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Figure 2: Solution Profile for Test Problem 1.

®
* @ x—-=x  DASPK-KAM
. ){§ % G — -0 DASPK-KINT
10 + i ——+  MPI-KAM
*“% #%  MPIKINT
X q
5o
)g! I
*A !
X
=
g M
= *% 1A= =
w Mt
“

L
-
oc
e
s
*

Fxox
Feemwmo o,
o--0--6--9 *

-e

®

o oa

= )
5

10 .
10 10
Work

Figure 3: Solution Profile for Test Problem 2.
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